Local mesh quantized extrema patterns for image retrieval
نویسندگان
چکیده
In this paper, we propose a new feature descriptor, named local mesh quantized extrema patterns (LMeQEP) for image indexing and retrieval. The standard local quantized patterns collect the spatial relationship in the form of larger or deeper texture pattern based on the relative variations in the gray values of center pixel and its neighbors. Directional local extrema patterns explore the directional information in 0°, 90°, 45° and 135° for a pixel positioned at the center. A mesh structure is created from a quantized extrema to derive significant textural information. Initially, the directional quantized data from the mesh structure is extracted to form LMeQEP of given image. Then, RGB color histogram is built and integrated with the LMeQEP to enhance the performance of the system. In order to test the impact of proposed method, experimentation is done with bench mark image repositories such as MIT VisTex and Corel-1k. Avg. retrieval rate and avg. retrieval precision are considered as the evaluation metrics to record the performance level. The results from experiments show a considerable improvement when compared to other recent techniques in the image retrieval.
منابع مشابه
Texture and Color-based Image Retrieval Using the Local Extrema Features and Riemannian Distance
A novel efficient method for content-based image retrieval (CBIR) is developed in this paper using both texture and color features. Our motivation is to represent and characterize an input image by a set of local descriptors extracted at characteristic points (i.e. keypoints) within the image. Then, dissimilarity measure between images is calculated based on the geometric distance between the t...
متن کاملColor Texture Image Retrieval Based on Local Extrema Features and Riemannian Distance
A novel efficient method for content-based image retrieval (CBIR) is developed in this paper using both texture and color features. Our motivation is to represent and characterize an input image by a set of local descriptors extracted from characteristic points (i.e., keypoints) within the image. Then, dissimilarity measure between images is calculated based on the geometric distance between th...
متن کاملCombination of Color and Local Patterns as a Feature Vector for CBIR
The local properties of an image can be acquired in many ways. Local Binary Patterns(LBP) operator is one among them in which a centre pixel is referenced with the neighboring pixels to obtain a feature vector. However, the directions are not considered in this method. The Directional Local Extrema Patterns(DLEP) are used to encode the relationship between the reference pixel and its neighbors ...
متن کاملA Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features
Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...
متن کاملA Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features
Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2016